

PII: S0960-894X(97)10040-3

DEOXY*XYLO*THYMIDINE 3'-O-PHOSPHOROTHIOATES: SYNTHESIS, STEREOCHEMISTRY AND STEREOCONTROLLED INCORPORATION INTO OLIGOTHYMIDYLATES

Xian-bin Yang, Konrad Misiura, Marek Sochacki and Wojciech J. Stec* Polish Academy of Science, Centre of Molecular and Macromolecular Studies, Department of Bioorganic Chemistry, Sienkiewicza 112, 90-363 Łódź, Poland

Abstract: New reagent, 5'-O-DMT-xylothymidine 3'-O-(2-thio-4,4-spiropentamethylene-1,3,2-oxathiaphospholane) and its separated diastereomers can be used for stereocontrolled incorporation of xylothymidine 3'-O-phosphorothioate of predetermined sense of P-chirality into desired oligonucleotide constructs.

© 1997 Elsevier Science Ltd.

Although an early interest in chemistry of *xylo*nucleosides was kindled by hopes of their use as intermediate in the synthesis of oligonucleotides, most efforts were paid to their use in the synthesis of new therapeutics, such as AZT² and others.³ 3'-O-Activated *xylo*nucleosides, if used as the substrates for oligo(nucleoside phosphorothioate)s synthesis, have shown limited application due to the low nucleophilicity of phosphorothioate ions towards secondary 3'-carbon atom and elimination process accompanying substitution.⁴ Oligonucleotides containing incorporated 2'-deoxyxylonucleosides were first prepared by Shabarova⁵, and independently by Seela *et al.*⁶ Both groups of researchers emphasized lower avidity of oligonucleotides containing incorporated 2'-deoxyxylonucleosides towards complementary DNA or RNA and their enhanced stability against nucleases.

In this communication we wish to present the synthesis of oligonucleotides with incorporated xylothymidine linked with 3'-O-phosphorothioate function. It was of interest to check to what extent the replacement of internucleotide phosphate by stereogenic phosphorothioate linkage(s) will influence upon the physicochemical properties and enzymatic stability of oligonucleotide constructs possessing incorporated xylothymidine phosphorothioate functions. 5'-O-Trityl-xylothymidine 3'-O-acetylthymidyl (3',5')-O-2cyanoethylphosphorothioate (4) was obtained as a mixture of two diastereomers according to phosphoramidite methodology represented in Scheme 1. Condensation of 5'-O-trityl-xylothymidine 3'-O-(2-cvanoethyl)-N,Ndiisopropylphosphoramidite (1a) with 3'-O-acetylthymidine (2a) in the presence of tetrazole was performed in acetonitrile solution. The ratio of reagents 1a:2a was 1.3:1. Intermediate 3'-O-(2-cyanoethyl) phosphite (3) without isolation was sulfurized with elemental sulfur and resulting fully protected dimer 4 formed as a mixture of two diastereomers (ratio 56:44, ³¹P-NMR assay), was applied onto silica gel column (silica gel: 230-400 mesh; solvent system: CH₂Cl₂, then a gradient of 0-2% methanol in chloroform) for purification and diastereomers separation. Purity of diastereomers of 4 (Fast-eluted, Fast-4, yield 30% and Slow-eluted, Slow-4, yield 15%) were confirmed by means of ³¹P-NMR: Fast-4, R_f 0.32 (on silicagel plates 60 F₂₅₄, solvent system CHCl₃:EtOH, 19:1), δ_p 67.59 ppm (CDCl₃); Slow-4, R_f 0.18, δ_p 66.74 ppm (CDCl₃).⁸ Each diastereomer Fast-4 and Slow-4 was deprotected by sequential treatment with 80% acetic acid (three days at r.t.) followed by concentrated ammonia at 55°C for 16 h, respectively.

^{*} E-mail: wjstec@bio.cbmm.lodz.pl; Fax no: (48-42) 81 54 83

2652 X. YANG et al.

Thus, deprotection of Fast-4 (silicagel) gave Fast-5 (RP-HPLC); R_t 11.92 min, δ_p 59.30 ppm (CD₃OD+D₂O), FAB MS, -VE, m/z 561 (M)⁻; Slow-4 (silicagel) gave Slow-5 (RP-HPLC); R_t , 12.36 min, δ_p 57.47 ppm (CD₃OD+ D₂O), FAB MS,-VE, m/z 561 (M)⁻. (Scheme 1).

SCHEME 1

Independently, diastereomers Fast-5 and Slow-5 were prepared on an alternate route, according to oxathiaphospholane method recently developed in this Laboratory. 9 (Schemes 2 and 3).

SCHEME 2

Reaction of 5'-O-DMT-xylothymidine (6) with 2-N,N-diisopropylamino-1,3,2-oxathiaphospholane⁸ (7) in the presence of 1.5 molar equivalent of tetrazole in dry acetonitrile, or with 2-chloro-4,4-spiro-pentamethylene-1,3,2-oxathiaphospholane (8)¹⁰ in the presence of 5 molar equivalents of diisopropylethylamine in dichloromethane (phosphitylation), followed by addition of elemental sulfur, gave a mixture of diastereomers 9 or 10, respectively. Chromatographic purification on silicagel column (230-400 mesh) gave 9 or 10 in 54% and 72% yield, respectively, as the mixture of two diastereomers in the ratio 55:45 (³¹P-NMR assay). Any attempts for separation of diastereomers of 5'-O-DMT-xylothymidine 3'-O-(2-thio-1,3,2-oxathiaphospholane) (9) by means of silica gel column chromatography have failed. However, separation of the diastereomers of 10 was easily achieved by applying the sample onto a column (30x6 cm) containing Kieselgel 60H. The column was eluted with a mixture of ethyl acetate and petroleum ether (1:1, v/v).

Fast-eluted, Fast-10 [R_f 0.30 (silicagel plates 60 F_{254} , developing system: ethyl acetate-petroleum ether, 1:1), δ_p 104.07 ppm (C_6D_6), FAB MS, -VE, m/z 749 (M-1)⁻] was isolated with the yield 32%; Slow-eluted,

SCHEME 3

Fast-11 OAc (or Slow-11)

Fast-11 OAc (or Slow-11)

$$O Ihy$$
 $O Ihy$
 $O Ihy$
 $O Ihy$
 $O Ihy$
 $O Ihy$
 $O Ac$
 $O Ac$
 $O Ihy$
 $O Ac$
 $O Ihy$
 $O Ac$
 $O Ihy$
 $O Ac$
 $O Ihy$
 $O Ac$
 $O Ac$
 $O Ihy$
 $O Ac$
 $O Ac$
 $O Ihy$
 $O I$

2654 X. YANG et al.

Slow-10 , R_f 0.24, δ_p 105.85 ppm (C_6D_6), FAB MS-VE, m/z 749 (M-1⁻) was isolated with 30% yield. The condensation of each isomer of 10 (Fast- or Slow-eluted) with 3'-O-acetyl-thymidine (2a) in the presence of 1 molar equivalent of 1,4-diazabicyclo[5,4,0]-undec-7-ene (DBU) performed at room temperature (reaction time 30 min) led to the Fast-11 and Slow-11, respectively. After removal of protective groups with 3% DCA in dichloromethane followed by a concentrated ammonia products 5 were analyzed by RP-HPLC: from Fast-10 (diast. excess 87.0%, 31 P-NMR assay) Fast-5 (d.e. 87.6%, RP-HPLC assay) was obtained. Pure Slow-10 was converted to pure Slow-5 with the full stereospecificity. The corresponding pairs of diastereomers of 5 obtained on both alternative routes have shown to be identical by RP-HPLC analysis and FAB MS data.

Condensation of monomer Fast-10 and Slow-10 with thymidine immobilized *via* DBU-resistant succinoyl-sarcosinyl linker (2b) on controlled pore glass¹¹ was also investigated and proved to give the desired dinucleotide Fast-5 and Slow-5, respectively. To achieve satisfactory yield for coupling step (94%) the high molar excess of monomers Fast-10 or Slow-10 (*ca* 40-50 fold) and DBU (200-fold) was necessary to complete the reaction in 40 min.

The absolute configuration at phosphorus in both diastereomers Fast-5 and Slow-5 was tentatively assigned on the basis of results of enzymic degradation. Snake-venom phosphodiesterase (svPDE) preferentially cleaves phosphorothioate diesters of [R_p]-configuration. [R_p]-Dithymidine 3',5'-phosphorothioate is hydrolysed to the thymidine 5'-phosphorothioate, while [S_p]- diester is completely resistant toward svPDE-assisted hydrolysis. Thus, each diastereomer Fast-5 and Slow-5 was separately treated with this enzyme in 100 mM Tris-HCl buffer containing 20 mM MgCl₂, pH 8.0, and after overnight incubation at 37°C only the Slow-5 (RP-HPLC) was partly hydrolysed to the thymidine 5'-phosphorothioate and *xylo*thymidine, what allowed us to assign the absolute configuration of this substrate as [R_p]; under identical conditions the Fast-5 was completely resistant towards hydrolysis; therefore, the absolute configuration of this diastereomer should be [S_p]. For the purpose described below it is worth mentioning that Fast-5 of [S_p]-configuration was prepared from Fast-10, while Slow-5 of [R_p]-configuration was obtained from Slow-10.

In the following studies we obtained the dodecanucleotides containing xylothymidine incorporated in the central position. Oligonucleotides T_{12} (12) and A_{12} (13) were synthesized with an automatic synthesizer by means of phosphoramidite method. 13 The 5'TTTTTxyloT_{PO}TTTTTT3' (T₅xyloT_{PO}T₆, 14) and R_P/S_P-5'TTTTTxyloT_{PS}TTTTTT3' (T₅xyloT_{PS}T₆, mix-15) were synthesized with an automatic synthesizer via phosphoramidite method using phosphoramidite 1b in 7th cycle of synthesis of 14 and mix-15. Any attempts to separate diastereomers $T_5xyloT_{PS}T_6$ (mix-15) into $[S_P]$ - $T_5xyloT_{PS}T_6$ ($[S_P]$ -15) and $[R_P]$ - $T_5xyloT_{PS}T_6$ ($[R_P]$ -15) by means of RP-HPLC have failed. Similar difficulty was observed during attempts of separation of diastereomers of 5'-T₅T_{P5}T₆. ¹⁴ Therefore, [S_P]-15 and [R_P]-15 were synthesized by combining phosphoramidite and oxathiaphospholane methods. 10 The sequence T₆ (starting from 3'-T₁) was prepared by standard phosphoramidite method using ABI 392A DNA Synthesizer (1 µmole scale). Bound to the solid support via succinoyl-sarcosinyl linker T₆ was treated with 150 µl of solution of DBU (ca 200 µmol) in acetonitrile and Fast-10 or Slow-10, respectively, for 40 min by manual operation. The following sequences T₅ in [S_p]-15 and [R_p]-15 were completed via oxathiaphospholane method using 5'-O-DMT-xylothymidine-3'-O-(2-oxo-4,4-spiropentamethylene-1.3.2-oxathiaphospholane [16, 31 P-NMR, δ_p : 44.61 and 44.13 ppm (CD₃CN), ratio 60:40]. 10 The coupling yield between T₆ and Fast-10 and Slow-10 (switch from phosphoramidite method to oxathiaphospholane method) was 43% or 34%, respectively (DMT⁺ assay).

The average coupling yield for continued syntheses of dodecamers using 16 (conditions and reagents excess as above) were 95% and 75%, respectively (DMT⁺ assay). Isolation of products 12-15 was achieved by conventional work-up. Oligonucleotides were removed from the support by washing the column with 1 mL of concentrated ammonia at room temperature for 0.5-1 h. The 5'-protected oligonucleotides were then purified by RP-HPLC, and the detritylated compounds (80% AcOH in $\rm H_2O$) were again submitted to RP-HPLC and lyophilized. Purity of each dodecanucleotide was ca. 98% (PAGE analysis, 20% polyacrylamide gel). Electrophoretic mobility of modified oligonucleotides was the same as that of $\rm T_{12}$.

Heteroduplex	Duplex structure	Abbreviation	Tm ^a (°C)
13/12	5'-TTTTTTTTTTT-3' 3'-AAAAAAAAAAAA.5'	A_{12}/T_{12}	39.8
13/14	5'-TTTTT <i>xyloT_{PO}</i> TTTTTT-3' 3'-AAAAA-A-AAAAAA-5'	$A_{12}/T_5xyloT_{PO}T_6$	29.3
13/mix-15	5'-TTTTT <i>xyloT_{PS}</i> TTTTTT-3' 3'-AAAAA-A-AAAAAA-5'	$A_{12}/[Mix]-T_5xyloT_{PS}T_6$	27.6
13/[S _P]-15	$[S_p]$ -5'-TTTTT $xyloT_{PS}$ TTTTTT-3' 3'-AAAAA-A-AAAAAA-5'	$A_{12}/[S_p]-T_5xyloT_{PS}T_6$	27.8
13/[R _P]-15	$[R_P]$ -5'-TTTTT $xyloT_{PS}$ TTTTTT-3' 3'-AAAAA-A-AAAAAA-5'	$A_{12}/[R_P]-T_5xyloP_{PS}T_6$	28.3

Table 1. Formulas and melting temperatures (Tm) of heteroduplexes.

Oligonucleotides 14 and mix-15, R_p -15 and S_p -15 were characterized by treatment with nuclease P1 at 37°C for 3 h, followed by alkaline phosphatase at 37°C for 30 min. ¹⁵

Products of hydrolysis of oligonucleotides were analyzed by RP-HPLC providing thymidine and $xyloT_{PO}T$, mix-5, $[R_P]$ -5 and $[S_P]$ -5, respectively. Dodecathymidylates 14 and 15 form a stable 1:1 complexes with A_{12} and their melting characteristics, compared with that of A_{12}/T_{12} , are included in Table 1. It is interesting to notice that secondary structures of heteroduplexes formed by parent A_{12}/T_{12} , $A_{12}/14$ and $A_{12}/15$, independently upon absolute configuration of incorporated 5 according to CD criterion $A_{12}/A_$

Although an incorporation of single *xylo*thymidine has a dramatic effect on the Tm value of the duplexes, as pointed out earlier by Seela *et al.*, ¹⁷ phosphorothioate internucleotide bond following *xylo*thymidine has negligible influence upon Tm, independently upon absolute configuration at phosphorus. Such observation supports the conclusion that introduction of *xylo*thymidine induce structural distortions prevailing these caused by replacement of one of two non-bridging oxygen atoms of internucletide phosphate by sulfur and stereochemical consequences thereof.

^a The Tm values of the duplexes at 0.053 mM for each strand were measured in 10 mM Tris-HCl buffer, pH 7.5, containing 10 mM MgCl₂ and 100 mM NaCl by heating from 12°C-90°C at 0.3°C/min and measuring the UV absorbance at 260 nm.

2656 X. YANG et al.

Acknowledgments: This project was financially assisted by the State Committee for Scientific Research, grant no. 4.PO5F.023.10 (to W.J.S).

References and Notes

- 1. Zemlicka, J.; Smrt, J. Tetrahedron Lett. 1964, 5, 2081; Mizuno, Y.; Sasaki, T. J.Am. Chem. Soc., 1966, 88, 863.
- 2. Mitsuya, H.; Weinhold, K.J.; Furman, P.A.; St. Clair, M.H.; Lehrman, S.N.; Gallo, R.C.; Bolognesi, D.; Barry, D.W.; Broder, S. *Proc.Natl.Acad.Sci. USA* 1985, 82, 7096.
- 3. Balzarini, J.; Kang, G.J.; Dalal, M.; Herdewijn, P.; De Clercq, E.; Broder, S.; Johns, D.G. Mol. Pharmacol. 1987, 32, 162.
- 4. Yang, Xian-bin; Misiura, K.; Stec, W.J. submitted for publication.
- Sokolova, N.I.; Dolinnaya, N.G.; Krynetskaya, N.F.; Shabarova, Z.A. Nucleosides & Nucleotides 1990, 9, 515.
- 6. Rosemeyer, H.; Seela, F. Helv. Chim. Acta, 1991, 74, 748.
- 7. $^{31}P-NMR(81MHz, CDCl_3)$: $\delta_p=151.92 (49.1\%), 148.51 (50.9\%).$
- 8. The isolated total yield of 4 was 62%.
- 9. Stec, W.J.; Grajkowski, A.; Kobylańska, A.; Karwowski, B.; Koziołkiewicz, M.; Misiura, K.; Okruszek, A; Wilk, A.; Guga, P.; Boczkowska, M. J.Am. Chem. Soc. 1995, 117, 12019.
- 10. Karwowski, B.; Guga, P.; Stec. W.J. *The IXth European Symposium on Organic Chemistry*, Warszawa, Poland, June 18-23, **1995**, PC6; Stec, W.J.; Karwowski, B.; Guga, P.; Koziołkiewicz, M.; Boczkowska, M.; Wieczorek, M.W.; Błaszczyk, J. submitted for publication.
- 11. Brown, T.; Pritchard, C.E.; Turner, G.; Salisbury, S.A. J. Chem. Soc. Chem. Commun. 1989, 891.
- 12. Burgers, P.M.J.; Eckstein, F. Proc. Natl. Acad. Sci. USA 1978, 75, 4798. Uznański, B.; Niewiarowski, W.; Stec, W.J. Tetrahedron Lett. 1982, 23, 4289.
- 13. Oligonucleotides and Analogues: Apractical Approach. Ed. Eckstein, F.; IRL Press, Oxford 1991.
- 14. Koziolkiewicz, *M. Ph.D. Thesis*. Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Sienkiewicza 112, 90-363, Lodz, Poland, **1989**, p.190.
- 15. A solution of 14, mix-15, [S_P]-15 and [R_P]-15 (ca. 0.2 OD unit) in 100 mM Tris-HCl buffer containing nuclease P₁ (3 ug) (pH 7.2, 1 mM Zn⁺) was incubated at 37°C for 3h, then was treated with alkaline phosphatase at 37°C for 30 min, respectively. The protein was denatured on heat-block (95-100°C) for 2 min. The products were analyzed by RP-HPLC via coinjection with thymidine and corresponding dimer.
- 16. CD spectra of heteroduplexes (see Table 1) were recorded at 12°C in 10 mM Tris-HCl buffer, pH 7.5 containing 10 mM MgCl₂ and 100 mM NaCl.
- 17. Rosemeyer, H.; Krecmerova, M.; Seela, F. Helv. Chim. Acta, 1991, 74, 2054.

(Received in Belgium 27 May 1997; accepted 17 September 1997)